Building Extensible
Desktop Applications
with Zope 3

Nathan R. Yergler
Software Engineer
Creative Commons

er Creative Commons Attribution 2.5 license
5 RESERVED creativecommons.org/licenses/by/2.5/

‘ccPublisher

27 July 2006

ccPublisher

File Edit Help

[
AR

rd
Drag n' drop the audio or video files you want to publish to the web with

a Creative Commons license, or click the Browse button to manually
select your files.

| Browse || Delete |

Filename |

......................................

ccPublisher 2 Goals

Wanted to make customization easy
Allow for extensibility

Leverage common components
40 Reduced maintenance burden
4 We shouldn’t “own” anything that’s not strategic

27 July 2006 Extensible Applications with Zope 3

extensible (n):

“An architectural property of a program that allows
its capabilities to expand.”

http://web.mit.edu/oki/learn/gloss.html

27 July 2006 Extensible Applications with Zope 3 4

component (n):

“a system element offering a predefined service and
able to communicate with other components”

http://en.wikipedia.org/wiki/Software _component

27 July 2006 Extensible Applications with Zope 3 5

Zope 3

Zope Is an open source web application server

Zope 3 includes a component / event model
4 Adapters

0 Utilities

4 Events

27 July 2006 Extensible Applications with Zope 3 6

Zope 3 Overview

27 July 2006 Extensible Applications with Zope 3

A Simple Example

class CurrencyConverterApp:

def init (self, root):
o T value (US$): [10

oo Converted: |ED

Convert Exit |

def convert(self):
clear the output widget

self.txtOutput.delete(0,END)

set the output widget to input * 2
self.txtOutput.insert(0,

float(self.txtInput.get()) * 2)

27 July 2006 Extensible Applications with Zope 3 8

Steps to Extensibility
Separate interface and converter functionality

Decouple interface and converter using
component lookup

Allow for multiple providers of functionality

Package core functionality as an extension

27 July 2006 Extensible Applications with Zope 3

Separating Responsibilities
Write an interface declaration

Write a component which provides the
Interface

Use the component in the user interface

27 July 2006 Extensible Applications with Zope 3

10

|Converter

class IConverter(zope.interface.Interface):

def currency name():

"""Return the name of the target currency."""

def currency symbol():

"""Return the symbol for the target currency."""

def convert(usd value):

"""Convert USS$ value to the target currency."""

27 July 2006 Extensible Applications with Zope 3

11

The Converter Component

class RealConverter:

zope.interface.implements(interfaces.IConverter)

def currency name(self):

"""Return the name of the target currency."""

return "Real"

def convert(self, usd value):

"""Convert US$ value to the target currency."""

return usd value / 2.247

27 July 2006 Extensible Applications with Zope 3

12

Using the Component

def convert(self):
clear the output widget

self.txtOutput.delete(0,END)

set the output widget to input * 2
self.txtOutput.insert(0,
components.RealConverter () .convert(

float(self.txtInput.get())

)

27 July 2006 Extensible Applications with Zope 3

13

Decoupling the Pieces
Register the component as a utility

Use Zope component model to lookup our
converter

27 July 2006 Extensible Applications with Zope 3

14

Utilities
Components which provide an interface
Looked up by interface and optional name

Provide global functionality

Applications can be agnostic about how things
happen

27 July 2006 Extensible Applications with Zope 3 15

Registering the Component

from zope import component

register the converter as a utility
converter = RealConverter|()

component.provideUtility(converter, IConverter, 'Real'’)

27 July 2006 Extensible Applications with Zope 3

16

Using Component Lookup

def convert(self):
lookup our converter

converter =

zope.component.getUtility(

interfaces.IConverter, 'Real’')

clear the output widget

self.txtOutput.delete(0,END)

set the output widget to input * 2

self.txtOutput.insert(0,
converter.convert(float(self.txtInput.get())))

27 July 2006 Extensible Applications with Zope 3 17

Multiple Providers

Using multiple named Value (US9):
utilities is one option

RGQUIFGS US tO knOW the Target Currency:
names of all converters

Instead we use adapters | converted vaie:

Convert |

2247

Exit |

2 Recall utilities provide are
unique (Interface, Name)

9 There can be multiple subscription adapters

27 July 2006 Extensible Applications with Zope 3

18

Adapters

Components computed from other
components

Easily convert from one type of object to
another

“Normal” Zope 3 Adaptation is one-to-one

J one object in, one adapted object returned
Subscription Adapters are different:

J Return all adapters from A to B

27 July 2006 Extensible Applications with Zope 3 19

Refactoring the Interfaces

class IUSD(zope.interface.Interface):
def get value():
"""Return the stored value."""

class ICurrency(zope.interface.Interface):
def currency name():

"""Return the name of the target currency."""

def currency symbol():
"""Return the symbol for the target currency."""

class IConverter(zope.interface.Interface):

def convert():
"""Convert USS$ value to the target currency."""

27 July 2006 Extensible Applications with Zope 3 20

Implementing the Component

class RealConverter(object):
component.adapts(interfaces.IUSD)

interface.implements(interfaces.IConverter,
interfaces.ICurrency)

def init (self, usd):

self.usd = usd

implementation for IConverter
def convert(self):
return self.usd.get value() * 2

implementation for ICurrency

27 July 2006 Extensible Applications with Zope 3

21

Reqgistering the Component

Register as an ICurrency implementation for the list
component.provideSubscriptionAdapter (RealConverter,

provides=interfaces.ICurrency)

Register as an Adapter for the specific currency

component.provideAdapter (RealConverter,
provides=interfaces.IConverter,

name='RS$")

27 July 2006 Extensible Applications with Zope 3 22

User Interface: Target List

def init (self, root):

get a list of target currencies
u = components.USDCurrency (None)
currencies = [c.currency symbol() for c in
component.subscribers([u],
interfaces.ICurrency)]

self.lstTargets = Listbox(frame)

27 July 2006 Extensible Applications with Zope 3

23

User Interface: Converting

def

27 July 2006

convert (self):

create an object to hold the USS

usd = components.USDCurrency (
float(self.txtInput.get())

get the target currency symbol
target = self.lstTargets.get(
self.lstTargets.curselection()[0])

look up the converter by target name
converter = component.queryAdapter (usd,

interfaces.IConverter, target)

self.txtOutput.insert (END, converter.convert())

Extensible Applications with Zope 3

24

Extensions

Depend on application policy...
4 Where do they live?

J How are they registered?

...and application code...

4 What code is responsible for loading?
4 How are they allowed to interact with the app?

27 July 2006 Extensible Applications with Zope 3

25

Loading Extensions

ccPublisher uses ZCML slugs
4 ZCML is an XML-based configuration language

2 ccPublisher looks for small ZCML files in the
extensions directory and loads them

setuptools provides Entry Points which you
can iterate over

27 July 2006 Extensible Applications with Zope 3

26

Using entry points for loading
Move each “extension” into separate modules
Provide a register() function
Create a simple setup.py
Generate a Python Egg for each

Dynamically load extensions at run time

27 July 2006 Extensible Applications with Zope 3 27

Extension Module: real.py

class RealConverter(object):
component.adapts(interfaces.IUSD)

interface.implements(interfaces.IConverter,
interfaces.ICurrency)

def register():

component.provideSubscriptionAdapter (RealConverter,
provides=interfaces.ICurrency)

component.provideAdapter (RealConverter,
provides=interfaces.IConverter, name='R$')

27 July 2006 Extensible Applications with Zope 3 28

setup real.py

from setuptools import setup
setup(
name='real',
py _modules=['real'],
entry points = {'currency.register':

['real = real:register'],

}

$ python setup real.py bdist egg

27 July 2006 Extensible Applications with Zope 3

29

Loading the Extensions

load pkg resources, which is part of setuptools
import pkg resources

def loadExtensions():
"""Toad the extensions using the

currency.register entry point."""

iterate over available implementations
for e in pkg resources.iter entry points(

'currency.register'):

load the entry point
register = e.load()

call the registration function
register()

27 July 2006 Extensible Applications with Zope 3

30

Component-Based Results

Debugging is different

4 Cohesive components = shallower bugs

0 “Over-reaching” components = break out pdb
Our “application” is less than 10% of the total
code — in other words, 90% of code can be
shared between customized applications
Developers can easily extend the system

20 New storage providers

4 Extensions (i.e., Bit Torrent, blog pinging, etc)

27 July 2006 Extensible Applications with Zope 3 31

Thanks

Questions?

http://wiki.creativecommons.org/
OSCONZ2006

27 July 2006 Extensible Applications with Zope 3

32

